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Abstract

In the recent years, multi-core processors prove their ex-
tensive use in the area of System-on-Chip (SoC) on a single
chip. This paper proposes a methodology and implements
a multi-core simulator. The multi-core simulator is based
on SimpleScalar integrated with SystemC framework, which
deals with communication and synchronization among dif-
ferent processing modules. A shared memory scheme is in-
troduced for inter-core communication with a set of shared
memory access instructions and communication methods. A
synchronization mechanism, which only switches the simu-
lation component when communication occurs, is proposed
for efficiency. Experiments prove that our simulator can
correctly simulate the behavior of a multi-core system and
demonstrate a high performance on Linux PC platforms.

1 Introduction

After proven successes on supercomputers, multiple pro-
cessor systems evolve into Systems-on-Chip (SoC). Multi-
processors have gradually became the backbone of current
embedded systems in the areas of network processors [2],
multimedia processing [7], security enhancement [9] and
mobile terminals [3]. All these areas are characterized by
ever growing computation complexities and multi-tasking.
The design complexities are further challenged by the time
to market and strict cost constrains. To accelerate the de-
sign flow and shorten the time to market of multiproces-
sor systems, many researchers and industrial practitioners
have been exploring the fields of system architectures, hard-
ware/software co-simulation, debugging methods and com-
piler issues for the multiprocessor systems.

Among intensive research efforts on the simulation of
multiprocessor systems, most work focuses on the systems

consisting of homogeneous processors. The few efforts that
address the systems with heterogeneous or hybrid multi-
processors could not properly handle the multitasking is-
sues such as communications among the multiprocessor and
multi-task synchronization.

The major problems in simulating heterogeneous or hy-
brid multi-core processors arise from the difficulties in coor-
dinating different single processor simulators due to the dif-
ferences in both architecture and implementation. Besides,
a well organized communication mechanism is needed for
efficient, configurable and accurate simulation.

This paper proposes a simulation methodology with im-
plementation of a multi-core simulator. The multi-core sim-
ulator is built with the famous SimpleScalar tool set [4]
because it is popular among academic research and sup-
ports various existing architectures. We employ SystemC
[1] to encapsulate different architecture simulators to pro-
vide uniform interfaces. In this way, we can integrate both
homogeneous and heterogeneous single processor simula-
tors with only slight modifications as long as they are writ-
ten in C/C++, and provide possibility for co-simulation with
those existing commercial product modules. We implement
a shared memory module in SystemC to provide inter-core
communication. Communication occurs only when neces-
sary to ensure both accurate synchronization and a better
simulating performance. The multi-core simulator also sup-
ports bus arbitration and some basic shared memory ser-
vices.

Section 2 discusses related works of multi-core or multi-
thread simulators. Section 3 introduces the methodology
and framework of the proposed multi-core simulator, while
section 4 describes the implementation details. Section 5
evaluates the performance with several sets of tests. And
Section 6 summarizes this paper.
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2 Related Works

Many ongoing efforts on enhancing the simulation of
multiprocessor Systems-on-Chip have been reported. Gerin
et al. [8] presented a co-simulation framework targeting het-
erogeneous multiprocessor architectures which represents
communication aspects in message level, driver level and
register transfer level. Benini et al. [5] proposed a more
complete infrastructure with delicate definitions of commu-
nication interfaces, which significantly lessen costs of new
module integration. The balance of the approaches of Gerin
et al. [8] and Benini et al. [5] appears to be more on the
communication side as the abstract level of processor cores
in their framework is higher than the micro-architecture
level. However, the overall performance of a multiproces-
sor system depends not only on system level communica-
tion design, but also on the micro-architecture of each single
processor. Therefore, an efficient multiprocessor simulator
should have the capability to model both system level and
micro-architecture level design.

To exploit design space at both system and micro-
architecture level, some researches have been performed by
simulating multi-processor based on SimpleScalar tool set.
For example, Boyer et al. [6] integrated SystemC wrappers
and the SimpleScalar simulator. The strategy that they use
is to encapsulate the SimpleScalar simulator in C++ classes
and transform it into an open component, communicating
with external world. Manjikinn [12] proposed multiproces-
sor enhancements based on the SimpleScalar simulator. The
core simulation code is modified to support multiprocess-
ing, and a run-time library is added for thread creation and
synchronization. Jian Huang et al. [10] developed a Sim-
ulator for Multithreaded Computer Architectures (SIMCA)
based on SimpleScalar. The simulator introduces process-
pipelining to hide the details of the underlying simulator,
and achieves a performance of only 3.8 to 4.9 times slower
than the SimpleScalar based simulator.

The latest extension to simulate multiple cores on a sin-
gle processor based on SimpleScalar is the work by Donald
and Martonosi [11]. They enabled simulation of concurrent
execution of multiple cores in a processor by incorporate
multiple SimpleScalar engines into one control body. The
major difference between their work and ours is that inter-
core communications are enabled in our methodology. As
such, it is feasible for users of our simulator to simulate
cooperations of multiple cores cooperate on a shared task,
instead of the independent tasks assumed by Donald and
Martonosi [11].

3 Methodology and Framework

3.1 Develop the Framework with Sys-
temC

In this paper, we employ SystemC to build the frame-
work of the multi-core simulator. SystemC has been
adopted by EDA community to co-simulate systems de-
scribed in a mixture of HDL and SystemC. It has been
proven that SystemC works well to describe different mod-
ules in terms of functionality and hierarchy. We hence take
SystemC as the wrapper of multiple cores simulated by
SimpleScalar derivatives based on different instruction sets.
Additional advantages of SystemC are as follows.

It provides an efficient way to build multi-core simulator.
We can develop a multi-core simulator based on any exist-
ing simulator that is written in C or C++ languages. The
modifications on the original simulator only include pro-
viding a uniform single core simulator interface in SystemC
and encapsulating the main functions and variables into this
module. If the single core simulator is written in C, other
functions can be linked into a static lib and remain as exter-
nal C functions as long as the single core simulator module
functions well. This method of building a multi-core simu-
lator can significantly reduce the workload.

A modularized simulator is easier for both development
and maintenance. Usually a multi-core simulator may in-
clude different cores, hardware accelerators, memory mod-
ules, and communication fabric. A SystemC framework can
provide a well organized view and accurate timing to make
the job much easier.

3.2 Simulator Framework

The simulator framework we proposed is shown in Fig-
ure 1. The modules within the frame are already imple-
mented in our simulator. We choose to build the multi-core
simulator based on SimpleScalar, the popular instruction set
simulator for academic use. Except part of the SimpleScalar
simulators that are implemented in C language, all the com-
ponents are implemented in SystemC which provide inter-
faces that can be connected by SystemC channels.

In our simulator, we implement a dual-core system
based on different instruction-set SimpleScalars, i.e. a
PISA instruction-set one and an ARM instruction-set one,
a shared memory, and a shared memory bus arbiter dealing
with shared memory accesses. Other components such as
another core or hardware accelerators can be added to this
simulator system for the aim of co-simulation as long as
they implement a shared memory bus interface.

21st International Conference on
Advanced Information Networking and Applications Workshops (AINAW'07)
0-7695-2847-3/07 $20.00  © 2007



Figure 1. Multi-core Simulator Framework.

3.3 Synchronization Schemes

One of the major difficulties of multi-core simulation
with communication is the synchronization among differ-
ent processing components. Synchronization enables coop-
eration of multi-core on a single application. If synchro-
nization is not properly handled, it may generate incorrect
result.

The safest approach to multi-core synchronization is
round-robin, which runs each of the processing components
cycle-by-cycle(or instruction-by-instruction, in a functional
model) alternatively. However, this approach may cause
dramatic performance penalty due to the frequent thread
switching between different processing components (which
are implemented as SystemC modules). Our experiments
show that with two SimpleScalar modules running in cycle-
by-cycle round robin approach, the simulation speed drops
significantly compared to the original single SimpleScalar
processor. Table 1 shows the test results of sim-safe and
sim-outorder simulators.We can see that When simulating
in sim-safe mode, the performance drops to only 17% to
28% of the original SimpleScalar. Though the result of sim-
outorder mode is much better, there is still a penalty of about
33%, even there is no inter-core communication at all.

A better solution is to simulate in a coarse-grained
round-robin approach, for example, run every processing
component for several cycles and then switch to the next.
Although this approach can give a better performance, it
may generate incorrect simulation result since one process-
ing component may already run to the 1000th cycle while
another processing component tries to communicate with it
at the 999th cycle.

A more efficient way is needed for inter-core synchro-
nization to get a better performance while guarantee the ac-

Table 1. Performance Penalty with Round
Robin Approach.

Program jpeg qsort sha
1-core* 725 401 830

sim- 2-core** 486 261 591
speed outorder speed loss 33% 35% 29%

(k inst. 1-core 9351 5354 10704
/sec.) sim- 2-core 1014 759 931

safe speed loss 78% 72% 83%

* Average of SimpleScalar with PISA and ARM instruction sets.
** Two-core simulator with a PISA and an ARM instruction sets.

curacy. In this paper, we introduce a communication based
synchronization approach which can well satisfy our needs.
In this approach, synchronization between different cores is
only done when communication is necessary. Since instruc-
tions run within one processing component has nothing to
do with those run on the other processing components, only
instructions that relate to communication between different
components, that is, instructions access the shared memory,
may cause synchronization problems. Thus we only need to
invoke synchronization when shared memory accesses oc-
cur. To keep the implementation simple, we choose to inte-
grate this synchronization handler into the bus arbiter mod-
ule. As illustrated in figure 2, one processing component
runs until a shared memory access instruction is decoded.
Then the shared memory access request and the simulation
cycle count will be sent to the bus arbiter, which compares
the current cycle number of all the processing components
in the system and grands the one with the smallest cycle
number access to the shared memory.

3.4 Communication Mechanism

To work with the synchronization scheme, we take
shared memory as the inter-processor communication me-
dia in our simulator framework. The implementation of
the shared memory illustrates the potential to incorporate
other communication mechanism. Any processing compo-
nent that wants to access shared memory should implement
special load/store instructions and a functional unit called
shared memory port. We assume that all the processing
components are connected to the shared memory using a de-
voted shared memory bus. A devoted bus can ensure fast ac-
cess and communications, and bus arbitration are provided
to avoid conflictions. The shared memory module is written
in SystemC.

We also provide a library of shared memory related com-
munication services to facilitate parallel computing tests.
The services now only include shared memory allocation,
deletion and mail box services. Other services are to
be added in the near future, such as semaphore and
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Figure 2. Synchronization Scheme Involving
the Shared Memory.

message queue.
The services we provide are listed as follows:

1. Shared memory allocation and deletion services:

These services are provided so that an application run
on any of the processing components connected to the
shared memory bus can allocate a variable into the
shared memory space.

. int ShmAlloc (int type, int size)

Shared Memory Allocation: Allocate a piece of mem-
ory space in the shared memory and return the index
id of this piece of memory.

. void ShmDel (int id)

Shared Memory Deletion: Free a piece of memory
space in the shared memory according to the index id.

2. Mail box services:

Every processing component connected to the shared
memory bus has its own mail box in the shared mem-
ory which is used for communication among proces-
sors.

. MBmsg *MBPend (int proc num)

Wait for a message from the processing component
proc num’s mail box.

. void MBPost (int proc num, MBmsg *msg)

Send a message to the Processing component
proc num’s mail box.

3.5 Shared Memory Bus Arbiter

A shared memory bus arbiter is implemented to arbi-
trate the bus conflictions. Every processing component con-
nected to the shared memory bus has a fixed level of prior-
ity. When confliction occurs, the bus arbiter will grant the
processing component with the highest priority the accessi-
bility to the shared memory.

4 The Simulator and Implementation Details

4.1 SimpleScalar Architecture Extension

As discussed in section 3.4, if the SimpleScalar cores
want to use the shared memory module to communicate
with the other components, they must implement the special
shared memory access instructions and the shared memory
ports as the shared memory bus interface. A shared memory
port is integrated into SimpleScalar simply by adding this
new functional unit into the SimpleScalar resource. How-
ever, the implementation of the instructions is a little more
complex.

In order to use these new instructions, first, we need to
add these new instruction definitions into the SimpleScalar
machine definition. We choose to use dummy instructions,
i.e., the instructions that make sense to SimpleScalar com-
pilers but will never be used in applications, as the symbols
of our new instructions, thus avoiding the changes to Sim-
pleScalar compiler tools. After the dummy instructions are
decoded, we replace the opcodes, flags and instruction im-
plementations with our own definitions, and send them back
to the pipeline. From then on, the instructions will be recog-
nized as shared memory access instructions throughout the
pipeline. Memory access latency is calculated according to
the feedback from the shared memory bus arbiter.

4.2 Shared Memory Access and Imple-
mentation

Usually one shared memory access needs four module-
switching, which is shown in figure 3. First, the process-
ing component that wants to access shared memory should
send request to wake up the bus arbiter. Then, the arbiter
grants one component the right to access and send signal
to wake it up. After that, the processing component gen-
erates a bus transaction and wakes up the shared memory
module. Finally, after the shared memory dealing with
the data transfer, the running module is switched back to
the processing component. Since the module switching is
time-consuming, we integrate the shared memory and bus
arbiter into one module in our implementation, which fur-
ther optimizes the simulator performance. From figure 4 we
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can see that our implementation only requires two module-
switching for each shared memory access. Though such an
implementation will not reflect the timing of any physical
buses, our simulation model will still generate correct result
since SimpleScalar itself does not implement real buses.

 Shared Memory
Access Request

 Shared Memory
Access Acknowledge

 Access 
Shared Memory

 Shared Memory
Response

Figure 3. Four Module-Switching Shared
Memory Access.

Figure 4. Two Module-Switching Shared
Memory Access.

Figure 5 shows the implementation of the joint shared mem-
ory access module. When a shared memory access instruc-
tion is executed, a bus request signal will be sent to wake up
this module. Meanwhile, the shared memory access infor-
mation, i.e., the instruction and address, will also be sent to
this module. The shared memory access module will buffer
information of one instruction for every processing unit that
connects to the shared memory bus. After arbitration, it will
grant one processing component the right to access and run
its instruction in the buffer. Latency information for every
component will be updated at the same time.

Instruction Info 1

...

Bus Request 1

Data

Instruction Info 2

Instruction Info nBus Request n

...
Bus Request 1

Address

Figure 5. Implementation of the Joint Shared
Memory Access Module.

5 Experiments and Evaluations

In order to evaluate the performance of the multi-core
simulator, we conduct three test sets. The first test set aims
at evaluating the simulator performance without communi-
cation overheads. We run the same benchmarks on both
cores without any communication whose results are shown
in Table 2.

Table 2. Multi-core Simulator Run the Same
Program without Communication.

Program jpeg qsort sha
Simulation SingleSS1* 116 86 146

time SingleSS2** 168 115 189
(seconds) SS1+SS2 284 201 335

Multi-core*** 283 201 334
Simulation SingleSS1* 872 568 941

speed SingleSS2** 623 349 745
(k inst./sec.) SS1+SS2 725 401 830

Multi-core*** 727 480 833

* Simplecalar with PISA instruction set.
** SimpleScalar with ARM instruction set.
*** Two-core simulator with a PISA and an ARM instruction sets.

We would like to stress that the multiple processes for
the multiple cores in our simulator actually share the CPU
time of the single core processor on our PC. In other words,
our simulator actually executes the benchmark for multiple
times on the single core processor on our PC. Therefore,
we should compare our results against the sum of execution
time of stand alone runs. Even if there are multi-core pro-
cessors PC available, there is no effective compiler to assign
a simulator child process to a specific core.

In Table 3, the simulation time of our multi-core simula-
tor is no less than the sum of individual runs without com-
munication or synchronization. This indicates the efficiency
of our synchronization scheme. The efficiency is further il-
lustrated by the higher simulation speed of our multi-core
simulator.

Table 3. Tests for Communication Overheads.
data memory access (KB) 500 1,000 5,000

simulation SingleSS1* 688 687 699
speed SingleSS2** 502 603 581

(k inst./sec.) Multi-core*** 458 465 463
speed 9.5- 22.9- 20.3-

lost(%) 33.3 32.3 33.7

* Simplecalar with PISA instruction set.
** SimpleScalar with ARM instruction set.
*** Two-core simulator with a PISA and an ARM instruction sets.

Since the synchronization scheme is application sensi-
tive, we are also concerned with the worst case of perfor-
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mance. The second test set consists of programs that fre-
quently read and write shared memory, i.e., programs first
write certain amount of data to the shared memory and then
read from it. The test results are compared with results of
the multi-core simulator when each of its processing com-
ponents runs a program that read and write its own memory
with the same problem size. From the result shown in Table
3 we can see that we may have a performance penalty of
about 33% due to frequent communication. Since usually
there will not be this much communication between differ-
ent cores, we can expect a better performance for real appli-
cations.

The last test evaluates the simulator performance under
a common embedded application, i.e., an mp3 decoder. We
adopted an mp3 decoder to the multi-core environment by
dividing the decoding into two stages (stage one including
Sideinfo Extracting, Huffman Code Decoding, Requantiza-
tion, Reordering, Alias Reduction and IMDCT; the seconde
stage including Polyphase Synthesis Filter which asks for
about 50% calculation complexity in the whole mp3 decod-
ing algorithm), each of which runs on one core. Though
this application is not well partitioned, and there are minor
errors in the MP3 decoding process due to the compiler in-
compatibility (the MP3 decoding program we adopted was
originally designed for ARM), as long as these errors do
not affect the timing metrics, it still serves as a good case
of evaluating the simulator performance. Table 4 shows the
test results of decoding 2 frames, 5 frames and 10 frames of
a MP3 file. The application speed up due to parallelism is
round 22%, while the speed lost due to communication and
synchronization is less than 9%. Since a poor partition will
cause more overheads on synchronization, we can expect a
better performance when using a better partition.

Table 4. MP3 Decoder Simulation Results.

Number of Frames 2 5 10
simulated Single core 8.297e+7 2.140e+8 4.336e+8

cycle Multi-core 7.432e+7 1.581e+8 3.381e+8
Speedup 10.43% 21.47% 22.03%

simulation Single core 232 599 1207
time Multi-core 276 685 1358
(sec.) Overhead 18.97% 14.36% 12.51%

simulation Single core 526.435 529.320 530.646
speed Multi-core 494.167 486.821 484.065

(k inst./sec.) Speed loss 6.13% 8.03% 8.78%

6 Conclusions

In this paper, we have implemented a multi-core simula-
tor based on SimpleScalar with framework, communication

and synchronization implemented in SystemC. The simu-
lator adopts shared memory, with shared memory access
instructions and communication methods, as the inter-core
communication scheme. In order to speed up the perfor-
mance, we introduce a synchronization mechanism which
only requires module switching when communication is
necessary. This simulator can correctly simulate multi-
core system and provide extensibility for co-simulation with
other modules written in SystemC.

Future work may include extensions of shared mem-
ory services, cacheable shared memory module implemen-
tation, other cores and hardware accelerators integration
which will enable a more comprehensive and flexible co-
simulation.
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